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Abstract
In this study, amicromechanical finite elementmodel is proposed based on experimental data and the
rule of themixture (RoM) in order to predict the tensile behavior ofmechanical properties of heat-
treated dual-phasemedical-grade titanium (Ti–6Al–4V). Tensile tests,micro-hardnessmeasure-
ments, andRoMwere used to obtainflow curves for theα andβ phases. Scanning electronmicroscopy
(SEM) imagingwas used to determine phase fractions and to create representative volume elements
(RVEs). Furthermore, theGurson-Tvergaard-Needleman (GTN) damagemodel was calibrated using
the Taguchi design of experiment (DOE)method in order to predict damage in themicrostructure
and the results were compared to fracture surface obtained using fractography in order to investigate
failuremechanisms. Thefinalmicromechanicalmodel could accurately predict stress-strain curves
and showed that void formation and coalescence is the primarymechanismof failure. Finally, analyses
of the surfaces showed that a fully ductile fracture occurs at the failure point, which agrees with the
results of the damagemodel. The results suggest that the proposedmodel can predict the failure of
heat-treated Ti–6Al–4V bio-alloys.

1. Introduction

Biocompatibility, high corrosion resistance, high spe-
cific strength, and low density are the most critical
features of Ti–6Al–4V alloys, also known as ‘Titanium
grade 5’ [1]. These properties make this alloy the most
attractive titanium alloy in biomedical industries,
marine and petrochemical applications, as well as the
transportation industry [1–5].

Microstructures, and subsequently, the mechan-
ical properties are influenced by the heat treatment
process, especially in titanium alloys [6]. Many recent
studies are dedicated to the effects of heat treatment on
microstructure evolution and phase transformation in
additively manufactured Ti–6Al–4V alloy [7–10],
which highlights the necessity of further research
efforts, especially a survey on the damage characteriza-
tion of heat-treated, 3D printed Ti–6Al–4V via micro-
mechanicalmodeling.

Although there have been widespread micro-
mechanical investigations on different metals with
dual and multi-phase microstructures, particularly
different steel grades [11–14], not many studies
focused on the optimization of the mechanical perfor-
mance of titanium alloys using insights from the finite
element method. The dual-phase microstructure of
Ti–6Al–4V alloy makes it very suitable for micro-
mechanical analysis. Ti–6Al–4V alloys consist of a
microstructure with a softer matrix (α phase) with a
harder phase, known as the β phase. The size, morph-
ology, and volume fraction of the β phase rely on the
production process, particularly on the annealing
temperature and the heat treatment process [15].

It has been established in the literature that hard-
ness H( ) and flow stress s( ) are related using the
expression e s e=H C( ) ( )where C is strain-indepen-
dent under some test conditions [16, 17]. This rela-
tionship has been successfully used to estimate the
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yield stress in steels [18, 19]. Furthermore, the RoM
has been used to establish a relationship between the
hardness of the phases and that of the alloy. Due to the
linear relationship between hardness and flow stress,
the RoM can also be used for predictions of the flow
stress [20].

The Gurson–Tvergaard–Needleman (GTN)
damage model [21] is a ductile failure criterion which
has been used to study failure mechanism in many
metals [22–25], including titanium alloys [26–28]. The
GTNmodel considers nucleation, growth, and coales-
cence of micro-voids and void volume fraction, which
can give a suitable view of the damage in a material
[29]. Recently, the calibration of GTN parameters in
order to accurately predict the damage mechanisms
has seen increased attention. In order to have a suc-
cessful calibration and to reduce the number of trials,
the design of experiment (DOE)methods and, in part-
icular, the Taguchi method has been effectively
applied tomechanical studies [30–34].

To the best of the authors’ knowledge, no compre-
hensive research exists on the effect of heat-treatment
on the GTN damage mechanisms of Ti–6Al–4V alloy
and following its micro-mechanical characteristics. In
this study, aging heat-treatment was performed as it
was found more beneficial due to enhancing larger β
grains [35], subsequently higher yield stress among all
the heat treatment conditions examined by Li et al
[36]. Furthermore, to validate damage simulations,
the material was characterized experimentally using
scanning electron microscopy (SEM), hardness mea-
surements, and tensile testing. Experimental data were
used to perform two-dimensional (2D) micro-
mechanical finite element (FE) simulations in the
representative volume element (RVE) framework.
Finally, the GTN damage model was calibrated using
the Taguchi DOE approach and used to analyze
damage initiation and failure mechanisms in a cold-
rolled aged Ti–6Al–4V alloy.

2.Materials andmethods

2.1.Materials
A commercially cold-rolled and annealed sheet of
2.00 mm thick Ti–6Al–4V alloy with the chemical
composition given in table 1, was aged at 550 °C for
eight hours and air-cooled.

The heat-treated samples were prepared for hard-
ness testing and SEM images according to the ASTM
E3-17 standard. They were wet-ground with 120, 220,
600, 1000, 1200, 1500, 1800, and 2000 grit SiC papers,
and subsequently polished via a 0.25 μm alumina

suspension. Samples were then etched by Kroll’s
reagent in a solution consisting of 5%HF, 10%HNO3,
and H2O before SEM observations. The SEM image
can be seen in figure 3(a) with the gray areas being the
α phase and the white areas, which represent the β

phasewith 15.2%of volume fraction.
Tensile test specimens were prepared according to

DIN50125 standard, and uniaxial tensile tests were
performed at room temperature with a strain rate of
1.6×10−4 s−1. The tests were repeated three times to
account for repeatability. The elastic-plastic portions
of engineering stress-strain curves are plotted in
figure 1.

In addition, using backscattered electron imaging,
the microstructure of both as-received and aged sam-
ples have been depicted in figures 1(b) and (c), respec-
tively. The bimodal α+β equiaxed microstructure
could be observed in the images [37]. Regarding the air
cooling process, In figure 1(c), the β grain boundaries
are clearly revealed by a wideα layer. These large alpha
lamellae could also be depicted due to the aging heat
treatment [38].

2.2.Micro-hardnessmeasurements
Micro-indentation testing was performed according
to DIN EN ISO 14577-1 using a FISCHERSCOPE
HM2000 on the as-received and aged Ti–6Al–4V alloy
in order tomeasure themechanical properties of theα
and β phases. A maximum indentation load of 40 mN
was reached within 14 s and held for 5 s before
unloading for 14 s.

A total of 85 valid measurements were taken in
various points of the microstructure, some of which
were near phase boundaries. It is evident from the
work of Kadkhodapour et al [39] that the hardness
changes in the vicinity of phase and grain boundaries.
Therefore, for each specimen, the three highest and
lowest hardness values were considered as candidates
for the soft (α) and hard (β) phase, which can be seen
in table 2. Here, measurements identified as As-
Received-3 andAged-3 were rejected because they were
too low compared to measurements 1 and 2 for their
respective specimens. These values were then averaged
to obtain a representative hardness for the α and β

phases, which were 225.362 and 580.768 for the as-
received specimen and 201.253 and 501.154 for the
aged sample. The loading curves for each hardness
measurement and residual indent impressions for the
Aged-2 and Aged-5 data points are shown in
figure 2(e).

Afterward, the ratio of Vickers hardness in the α
andβ phases ( a bHV )was calculated as:

Table 1.The chemical composition of Ti–6Al–4V alloy used in this study (wt%).

Ti Al V Fe C N O H

Balance 5.82 3.92 0.09 0.011 0.003 0.12 0.012
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In section 2.3.2, this experimental finding is used
for modeling the microstructure of dual-phase aged
Ti–6Al–4V alloy.

2.3.Micromechanicalmodeling
2.3.1. Representative volume element
The SEM images of themicrostructure of aged samples
were processed using the image processing toolbox of
Matlab software to produce a binary image with the
same β phase fraction as obtained in the previous
section (figure 3). The binary image, which is a
300*300 cropped picture out of the SEM image,
marked as yellow in figure 3(a)was processed using an

Figure 1. (a)Engineering stress-strain curves of as-received and agedTi–6Al–4V alloy, (b)As-received BSE imagewith 5kmagnitude,
and (c)BSE Image of Aged Ti–6Al–4V alloywith 5kmagnitude.

Table 2.Highest and lowest values of Vickers hardness obtained frommicro-indentation tests on the as-received and aged specimens.

Identifier VickersHardness Remarks AverageHardness

As-Received-1 587.961 Candidate forβ. 580.768

As-Received-2 573.575 Candidate forβ.

As-Received-3 514.967 Rejected.

As-Received-4 229.441 Candidate forα. 225.362

As-Received-5 225.077 Candidate forα.

As-Received-6 221.568 Candidate forα.

Aged-1 510.432 Candidate forβ. 501.154

Aged-2 491.876 Candidate forβ.

Aged-3 445.333 Rejected.

Aged-4 216.942 Candidate forα. 201.253

Aged-5 196.113 Candidate forα.

Aged-6 190.705 Candidate forα.

3
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in-house Matlab code to create a two-dimensional
(2D) finite element mesh for the Abaqus FE analysis
software [40]. A total of 90 000 elements was used,
which is well in the convergence region of the mesh
study done in [41]. Based on [42], four-node 2D plane
strain elements with reduced integration (CPE4R)
were assigned to the FE mesh. The resulting RVE can
be seen in figure 3(c), in which the green sections refer
to theα phase, and the grey zones refer to theβ phase.

2.3.2.Mechanical properties of the phases
The two phases in themicrostructure weremodeled as
isotropic elastoplastic solids with similar elastic beha-
vior. Their flow behavior was estimated using
equation (2), which is based on the rule of mixtures
(RoM), which was successfully employed in previous

studies [20].

s e s e s e
s e
s e

= - +

= =

b a b b

a

b

a

b
a b

1 V V

HV

HV
HV

2
p f p f p

p

p

⎧
⎨⎪

⎩⎪
¯ (¯ ) ( ) ¯ (¯ ) ¯ (¯ )
¯ (¯ )
¯ (¯ )

( )

In these equations, s e ,p¯ (¯ ) s ea ,p¯ (¯ ) and s eb
p¯ (¯ )

refer to equivalent stresses as functions of equivalent
plastic strain for the macroscopic specimen [43, 44],
the α phase, and the β phase, respectively. aHV , and

bHV are Vickers hardness values for the α and β pha-
ses and their ratio, a bHV , in the aged samples was
obtained experimentally in section 2.2 to be 0.4. Also,
bVf is the volume fraction of the β phase and was

obtained experimentally in section 2.1 to be averagely
15.2% in the aged samples of Ti–6Al–4V alloy.

Figure 2. (a)–(d): The loading-unloading curves for the acceptedVickers hardnessmeasurements in table 2, and (e)Residual indent
impressions for theAged-2 andAged-5 data points (length units are inμm).
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Experimental flow curve of as-received and heat-
treated Ti–6Al–4V alloy along with their equivalent
stress-strain curves of the matrix material of a and b
phases, s ea ,p¯ (¯ ) and s eb ,p¯ (¯ ) are plotted in figure 4 and
were used as inputs for the FEA.

2.3.3. The Gurson–Tvegaard–Needleman (GTN)
damagemodel
In Ti–6Al–4V alloys, the β phase is the hard phase and
has the higher ultimate stress, for which elastoplastic
modeling is sufficient. However, the α phase is soft
and experiences ductile failure, which needs to be
taken into consideration. A suitable damage model is
the modified GTN model, formulated based on an
isotropic material containing a single spherical void
that contributes to the formulation of the yield
equation [45]. In this model, the yield potential
function describing the influence of void evolution on
hardening is in the formof equation (3):

f
s
s

s
s

= + - +

=

2q f cosh
3

2

q
1 q f

0
3

V

Y

2

1
2 H

Y
3

2* *
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

( )

In this equation, s ,V sH and sY are the Von Mises
equivalent stress, the hydrostatic stress, and the yield
stress of thematerial and q ,1 q ,2 and q3 are fitting para-
meters used to calibrate the model for experimental
results. The function f * accounts for the loss of load-
bearing capacity based on the increase of void fraction
(equation (4)).

=
+

-
-

- >


f f

f for f f

f
1 q f

f f
f f for f f

4
c

c
1 c

F c
c c

*

⎧
⎨⎪
⎩⎪

( ) ( ) ( )

Here, f is the void fraction, fc and fF are critical void
volume fractions at the onset of coalescence and at the
point of complete fracture [46]. Increaseof void fraction
proceeds by the growth of existing voids (fvoid growth)
andnucleation ofnewvoids (fvoid nucleation):

Figure 3.The procedure of the RVE creation fromSEM images for simulation analysis. (a) SEM image of AgedTi–6Al–4V alloywith
10kmagnitude; (b) 300*300 binarized image of themicrostructure created from themarked region of (a); (c)RVEmodel used in
numerical simulation based on a 2Dplane strainwith 90,000 elements.

Figure 4. Flow curves of themacroscopic specimens and theα andβ phases for (a) as-received and (b) agedTi–6Al–4V alloy.
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where ekk is the volumetric plastic strain rate; fN is the
volume fraction of secondary voids; ē is the equivalent
plastic strain; eN and SN are mean value and standard
deviation of the characteristic plastic strain distribu-

tion [47], respectively; and ē

is the equivalent plastic

strain rate [48].
The GTN damage model relies on a large number

of macroscopic and microscopic variables, which
makes the calibration very difficult. In the GTNmodel
outlined above, nine parameters have to be specified as
properties of the material. These parameters and their
respective values have been defined in table 3. Values
for q ,1 q ,2 and q ,3 which are the most important para-
meters [49], have been extracted from previous studies
[49] and [50]. Guzman et al [27] reported very low
( ´ -1.0 10 6) values for f0 which has also been used in
this study. Different values for the critical void frac-
tion (fc) of Ti–6Al–4V alloy have been used in the lit-
erature. In this study, three values (0.04, 0.27, and
0.50) have been applied for the void fraction. Failure

void fraction (fF) can be determined based on f ,c so the
values (0.06, 0.32, and 0.6, which are based on the pre-
vious studies as referred in the table below) have been
used as well. The other three parameters which are f ,N

eN and SN have been optimized using the Taguchi
method in section 2.3.4.

2.3.4. Design of experiment using the Taguchimethod
The Taguchi DOE is one of the best methods for
analyzing multiple variables. In this method, the most
effective parameters are chosen as inputs. In the
current study, failure void fraction (fF), void nuclea-
tion rate (fN ), void nucleation strain (eN ) and standard
deviation of void nucleation strain (SN ) are the
variables with values, as discussed in the previous
section. Nine trials were determined using Matlab
software based on 3-level 4-factor design and carried
out using FEA. The details of these trials are reported
in table 4.

In order to quantify the results of each trial and
find the most optimal set of parameters, the root-
mean-squared error (RMSE) between experimental
and predicted stress values was calculated for each
trial, according to equation (6).

Table 3.GTNmodel parameters for Ti-6A-l4V.

Parameter Meaning Value(s) Source

q1 Determines the shape of the yield surface 1.5 [50]

q2 Determines the shape of the yield surface 1 [50]

q3 Determines the shape of the yield surface 2.25 [50]

f0 Initial void fraction ´ -1.0 10 6 [27]

fc Critical void fraction
=f f,

0.04, 0.06
0.27, 0.32
0.50, 0.60

C F

⎧
⎨⎪
⎩⎪

( )
( )
( )
( )

[27]

[50]
fF Failure void fraction [51]

fN Void nucleation rate 0.0007 [51]

0.008 [50]
0.06 [43]

eN Void nucleation strain 0.2 [51]
0.25 [50]
0.3 [43]

SN Standard deviation on void nucleation strain 0.025 [50]
0.1 [27]
0.3 [43]

Table 4.DOEwith four factors in three levels by the Taguchimethod.

NO. f0 fc fF SN eN fN Simulated StrainValues of Failure StrainDifferences

1 ´ -1 10 6 0.04 0.06 0.025 0.25 0.0007 0.100 195 0.0525

2 ´ -1 10 6 0.04 0.06 0.10 0.20 0.008 0.059 387 0.0933

3 ´ -1 10 6 0.04 0.06 0.30 0.30 0.06 0.034 165 0.1185

4 ´ -1 10 6 0.27 0.32 0.025 0.20 0.06 0.037 585 0.1148

5 ´ -1 10 6 0.27 0.32 0.10 0.30 0.0007 0.144 872 0.0078

6 ´ -1 10 6 0.27 0.32 0.30 0.25 0.008 0.088 017 0.0647

7 ´ -1 10 6 0.50 0.6 0.025 0.30 0.008 0.084 459 0.0682

8 ´ -1 10 6 0.50 0.6 0.10 0.25 0.06 0.039 089 0.1136

9 ´ -1 10 6 0.50 0.6 0.30 0.20 0.0007 0.149 589 0.0028
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å= -
=

RMSE 1 n y y 6
j 1

n

i j
2( ) ( )/

Where yi is the stress value predicted using FEA and
(yj) is the experimentally observed value at that strain,
and n is the number of strains in which this measure-
mentwas taken.

3. Results and discussion

3.1. Choice of element type
Figures 5(a) and (b) show the stress-strain response of
plane stress and plane strain simulations for the as-
received and aged specimens without considering the
damage. In both cases, the plane stress model under-
estimates the yield stress and results in early failure.
Evidently, the plane strain model predicts the experi-
ment stress-strain results more accurately. However,
as it is evident in figures 5(c) and (d), the plane strain
condition fails to fully capture the effect of voids in the
microstructure.

3.2. Calibration of damage parameters
Nine trials with various combinations of GTN damage
model parameters were conducted as designed using

the Taguchi method with the help of Matlab software.
‘Failure strain values’ were determined to be the
response or the output of the trials. This set of
parameters plays a very significant role in attaining the
optimized variables, for a better damage model, and is
obtained from the finite element simulations. Details
of the trials and their results are listed in table 4.

The optimization procedure was done based on
the failure strain. The trial with the minimum differ-
ence between the simulated failure strain and the
experiment was selected as the optimal one. Figure 6
illustrates the stress-strain curves of the trials designed
using the Taguchi method. Trial 9 with =f 0.6,F

=S 0.3,N e = 0.2N and =f 0.0007N has a minimum
difference with the experiment (Δε=0.0028).

Figure 7 depicts the plot of main effects for means
of the 4-factor-3-level Taguchi experimental design.
This shows that each parameter has its consequence
on the failure strain. According to the final results, fN

as representative of the void nucleation rate is themost
influential parameter. The effects of f ,F S ,N and e ,N on
the other hand, are comparatively small.

At the level of inclusions, the fN parameter
embodies the void volume fraction nucleated in the
material [24]. It can be assumed that not only adding

Figure 5.Effect of element type on simulation results; Plane-strain and plane-stress strain results for as-received (a) and aged (b)
specimens; Contour plot of equivalent plastic strain for the as-received specimen under plane strain (c) and plane stress (d) conditions.
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up the values of fN leads to the void initiation, but
also could it increase the load reduction rate, specifi-
cally after necking [9]. The number of cavities in the
matrix is also represented by this parameter. Hence,
the higher the values of fN can get, the earlier the fail-
ure of the specimen will occur. As reported in [24],
by the increment of f ,N while the slope of all the
stress-strain curves after fracture initiation has been
considered constant, the mechanical properties are
affected and weakened. For low loads, this leads to
rapid degradation of the load and voids initia-
tion [52].

Based on the results in figure 7 using the Taguchi
Method, optimal damage parameters are suggested,
which have been listed in table 5. It can be observed
from figure 8 that this set of parameters can model the
stress-strain response very well with an even fewer
RMSE in comparison with the nine trials demon-
strated infigure 6, with nearly a 3% error.

3.3.Damage initiation and progression
Figure 9 shows the evolution of damage in themodeled
RVE at various values of equivalent plastic strain. It is

Figure 6. Stress-strain curves of selected trials by Taguchimethod.

Figure 7.The plot ofmain effects formeans of the 4-factor-3-level Taguchi experimental design inMatlab software.

Table 5.Optimal damage parameters for the aged specimen.

q1 q2 q3 f0 fc fF SN eN fN

1 1.5 2.25 ´ -1 10 6 0.5 0.6 0.3 0.3 ´ -7 10 4

8
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evident that the usual damage mechanism of initia-
tion, propagation, and coalescence occurs.

The formation of shear bands is consistent with
the ductile fracture. Stress inhomogeneity in the inter-
face of hard and soft phases causes shear bands to

originate in the interface [53], which then collides and
grows in the softer phase (α), leading to coalescence
and final failure. It can be observed that stress does not
penetrate the β phase, validating the absence of
damage and thus showing that modeling damage in

Figure 8. Stress-Strain response ofmicromechanical simulationwith optimized damage parameters versus the experimental
engineering stress-strain curve of the aged Ti–6Al–4V alloy sheet.

Figure 9.Damage initiation and evolution in themicromechanicalmodel of agedTi–6Al–4V alloy, via employing the optimized
parameters of theGTNmodel, alongwith the distributions of plastic equivalent strain (PEEQ)with increasing the tensile strain values.

9
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the α phase was a valid choice. Furthermore, accord-
ing to figure 8(b), numerically predicted and exper-
imental stress-strain curves coincide very well with a
three percent error. This could indicate that the scalar
damage variables of the GTN model can describe the
deformation behavior adequately in the dual-phase
titanium. The results show that the failure pattern is
not severely deviating from classical ductile failure
observations. However, it was detected that the rela-
tively low deformation of β grains causes high defor-
mation localization in the surrounding α matrix,
which plays a vital role in the final failure of the mat-
erial. Furthermore, it is expected that the specific crys-
tallographic orientation ofα grains nearby the β phase
influences the possibility of damage initiation and pro-
pagation [54].

The evolution of damage is better visualized on the
deformed geometry without contours (figures 10(a)–
(e)). It is observed that damage initiates at region A in
figure 10(a). While this continues to propagate in
figure 10(b), other regions such as B start to initiate
(the initiation area has beenmagnified in figure 10(e)).
In figure 10(c), it is shown that damaged bands initi-
ated in marked sites coalesce. Finally, in figure 10(d),
they continue to grow and coalesce with the damage
occurring at site C, which results in the final failure of
the structure. The shear bands marked by the colored
circles are magnified in figure 10(e). An SEM image

(figure 10(f)) has been mentioned here as well, to ver-
ify the simulation results from the shear-band point of
view, and the assumption that was discussed in
section 3.1, that failure starts near the β phase with
increasing the load [55].

3.4. Final failuremechanism
Figure 11 shows the strain distribution before the final
failure. The results show similar damage mechanisms
as reported in previous studies, focusing on the role of
crack pattern in the mechanical failure of metals [56].
The stress field in the microstructure could lead to
void growth in shear bands, which could cause final
failure [57].

3.5. Analysis of fracture surfaces
Figure 12 shows the SEM images of fracture surfaces of
as-received and aged specimens. In all SEM images
representing the fracture morphologies, the cup-cone
shapes are evident, which indicate the obvious necking
[58]. It can be observed that the as-received sample
contains a number of dimples [59]. The presence of a
few voids, as marked in the magnified SEM image
(figure 12(c)) [60] in the fracture surface of the aged
sample, indicates that the primary failure mechanism
in this specimen could be the void coalescence [61].
The dimples in the aged specimen are smaller than the
dimples found in as-received samples, and more

Figure 10. (a)–(e)Damage initiation and evolution in themicromechanicalmodel of aged titaniumgrade 5 alongwith the plastic
strain in the damagedmodel after the contour elimination. (f)Detailed view of the shear band presence in the fracture surface of the
aged sample.
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homogenous dispersion of dimples from the size and
shape point of view could be depicted. The homo-
geneity of shear bands is also evident in the heat-
treated samples, as discussed in figure 10(a). These
properties can account for the increase in strength seen
in the stress-strain curve [62].

As was evident in figure 1 aged sample had lower
ductility than the as-received specimens. This
phenomenon can be explained using fractography
images. This low ductility is aligned with an inter-
granular dimple rupture. Therefore, the formation of
dimples due to the strain localization can explain this
lower ductility [63].

4. Conclusion

In this paper, failure and damage mechanisms in as-
received and aged Ti–6Al–4V bio-alloy under tensile

loading were investigated using experiments and finite
element analyses. The objective of this study was to
obtain a set of parameters for successful micromecha-
nical simulation of the tensile behavior of Ti–6Al–4V
alloy using experimental and numerical methods.
Tensile tests and micro-hardness measurements were
utilized alongside the rule ofmixtures (RoM) to obtain
flow curves for the α and β phases. SEM imaging was
used to determine phase fractions and to create RVEs.
Furthermore, the GTN damage model was calibrated
using the Taguchi DOE method in order to predict
damage in the microstructure, and the results were
correlated with fracture surfaces obtained using frac-
tography to investigate the failuremechanism.

Themain conclusions of this study are as follows:

1. The Taguchi DoE method was successfully used
for calibration of the GTN damage model, and its

Figure 11.The equivalent plastic strain at failure.

Figure 12.The fracture surface of (a)As-receivedwith 2000×magnification, (b)Aged specimen under SEMwith 1500×
magnification, and (c) 2000×magnified image of the fracture surface of the aged sample (Marked as (A) in figure 12(b)).
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use significantly reduced the number of per-
formed simulations. The final numerically pre-
dicted stress-strain curve predicted the
experiment verywell with anRMSEof 3%.

2. Based on the Taguchi method and in the investi-
gated material, rate of void nucleation ( fN ) was
themost influential parameter in theGTNmodel.
The effects of f ,F S ,N and eN were comparatively
small.

3. The damage mechanism of initiation, propaga-
tion, and coalescence occurred in the specimens.
Stress inhomogeneity in the interface of hard and
soft phases caused shear bands to originate in
phase boundaries and then grow in the softer
phase, leading to coalescence and final failure.
The formation of shear bands was consistent with
the ductile fracture, and the absence of damage in
the β phase supported the use of the GTN damage
model.

4. Analyses of the fracture surface show few voids
and equiaxed homogenous dimples in the aged
sample, meaning that the primary failure mech-
anism in this specimen is void coalescence, which
supports the occurrence of ductile fracture, pre-
dicted by the simulations.
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